重温一下tf的线性回归
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plotdata = {"batchsize":[], "loss":[]} def moving_average(a, w= 10): if len(a)<w : return a[:] return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)] train_X = np.linspace(-1,1,100) train_Y = 2 * train_X + np.random.randn(100)*0.3 plt.plot(train_X, train_Y, 'ro', label= 'Original data') plt.legend() plt.show() X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) W = tf.Variable(tf.random_normal([1]),name="weight") b = tf.Variable(tf.zeros([1]),name="bias") z = tf.multiply(X,W)+b cost = tf.reduce_mean(tf.square(Y-z)) learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #梯度下降 init = tf.global_variables_initializer() training_epochs = 20 display_step = 2 with tf.Session() as sess : sess.run(init) plotdata = {"batchsize":[],"loss":[]} for epoch in range(training_epochs): for(x,y) in zip (train_X, train_Y): sess.run(optimizer,feed_dict={X:x,Y:y}) if epoch % display_step == 0: loss = sess.run(cost, feed_dict = {X:train_X, Y:train_Y}) print("Epoch :" , epoch+1, "cost=", loss, "W=",sess.run(W),"b=",sess.run(b)) if not (loss == "NA"): plotdata["batchsize"].append(epoch) plotdata["loss"].append(loss) print("Finished!") print("cost=",sess.run(cost, feed_dict={X:train_X,Y:train_Y}),"W=",sess.run(W),"b=",sess.run(b)) plt.plot(train_X, train_Y, 'ro', label = "Original data") plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label ="Fittedline") plt.legend() plt.show() plotdata["avgloss"] = moving_average(plotdata["loss"]) plt.figure(1) plt.subplot(211) plt.plot(plotdata["batchsize"],plotdata["batchsize"],'b--') plt.xlabel('Minibatch number') plt.ylabel('Loss') plt.title('Minibatch run vs . Trainning loss') plt.show()
发表评论